next up previous contents
Next: Model1 Up: ËÝÌõ¥â¥Ç¥ë Previous: ËÝÌõ¥â¥Ç¥ë   目次

IBMËÝÌõ¥â¥Ç¥ë

ËÝÌõ¥â¥Ç¥ë¤ÎÂåɽÎã¤È¤·¤Æ¡¤Brown¤é¤¬Äó°Æ¤·¤¿IBMËÝÌõ¥â¥Ç¥ë[4]¤¬¤¢¤ë¡¥IBM ËÝÌõ¥â¥Ç¥ë¤Ï¡¤Model1¤«¤éModel5¤Þ¤Ç5¤Ä¤Î¥â¥Ç¥ë¤«¤é¤Ê¤ê¡¤½ç¤ËÊ£»¨¤Ê·×»»¤È¤Ê¤ë. IBMËÝÌõ¥â¥Ç¥ë¤ÏËÜÍ衤ʩ±ÑËÝÌõ¤òÁÛÄê¤È¤·¤Æ¤¤¤ë¤¬¡¤Ëܸ¦µæ¤Ç¤ÏÆü±ÑËÝÌõ¤È±ÑÆüËÝÌõ¤ò¹Ô¤¦¤¿¤á¡¤Æü±ÑËÝÌõ¤òÁÛÄꤷ¤ÆÀâÌÀ¤ò¤¹¤ë¡¥

±Ñ¸ìʸ $E$ ¡¤ÆüËܸìʸ $J$ ¤ÎËÝÌõ¥â¥Ç¥ë $P(J\vert E)$ ¤ò·×»»¤¹¤ë¤¿¤á¤Ë¥¢¥é¥¤¥ó¥á¥ó¥È $a$ ¤òÍѤ¤¤ë¡¥¥¢¥é¥¤¥á¥ó¥È¤È¤Ï¡¤ÆüËܸìñ¸ì$J$¤È±Ññ¸ì$E$¤ÎÂбþ¤ò°ÕÌ£¤¹¤ë¡¥°Ê²¼¤ËIBM¥â¥Ç¥ë¤Î¼°¤ò¼¨¤¹¡¥


$\displaystyle P(J \mid E)$ $\textstyle =$ $\displaystyle \sum_{\it a} P(J,a \mid E)$ (2.3)

IBM¥â¥Ç¥ë¤Î¥¢¥é¥¤¥á¥ó¥È¤Ç¤Ï¡¤Æü±ÑÅý·×ËÝÌõ¤Î¾ì¹ç¡¤ÆüËܸìñ¸ì$j$¤ËÂФ¹¤ë±Ññ¸ì$e$¤Ï£±¤Ä¤¢¤ê¡¤³Æ±Ññ¸ì$e$¤ËÂФ¹¤ëÆüËܸìñ¸ì$j$¤Ï0¤«¤é$n$¸Ä¤¢¤ë¤È²¾Äꤹ¤ë¡¥ ¤Þ¤¿¡¤ÆüËܸìñ¸ì¤ÎÂбþ´Ø·¸¤È¤·¤ÆŬÀڤʱÑñ¸ì¤¬¤Ê¤«¤Ã¤¿¾ì¹ç¡¤±Ñ¸ìʸ¤ÎʸƬ¤Ë¶õñ¸ì$e_0$¤¬¤¢¤ë¤È²¾Äꤷ¡¤¤½¤ÎÆüËܸìñ¸ì$j$¤È¶õñ¸ì$e_0$¤òÂбþ¤µ¤»¤ë¡¥



Subsections

2019-03-29