next up previous contents
Next: Model3 Up: IBMËÝÌõ¥â¥Ç¥ë Previous: Model1   目次

Model2

Model1¤Ë¤ª¤¤¤Æ¡¤¥¢¥é¥¤¥á¥ó¥È¤Î³ÎΨ¤Ï±Ñ¸ìʸ¤ÎŤµl¤Î¤ß¤Ë°Í¸¤¹¤ë¡¥¤½¤³¤Ç¡¤Model2¤Ç¤Ï¡¤kñ¸ìÌܤΥ¢¥é¥¤¥á¥ó¥È$a_{k}$¡¤ÆüËܸìʸ¤ÎŤµm¤Ë¤â°Í¸¤¹¤ë¤È¤·¡¤°Ê²¼¤Î¤è¤¦¤Ë¼¨¤¹¡¥


$\displaystyle a(a_{k}\vert k,m,l) \equiv P(a_{k}\vert a_{1}^{k-1},j_{1}^{k-1},m,l)$     (2.11)

¤³¤ì¤è¤ê¡¤(2.6)¼°¤Ï°Ê²¼¤Î¼°¤Î¤è¤¦¤Ë¤Ê¤ë.
$\displaystyle P(J\vert E)$ $\textstyle =$ $\displaystyle \epsilon \sum_{a_{1}=0}^{l}¡Ä\sum_{a_{m}=0}^{l}\prod_{k=1}^{m}t(j_{k}\vert e_{a_{k}})a(a_{k}\vert k,m,l)$ (2.12)
  $\textstyle =$ $\displaystyle \epsilon \prod_{k=1}^{m}\sum_{i=0}^{l}t(j_{k}\vert e_{a_{k}})\alpha(l\vert k,m,l)$ (2.13)

Model2¤Ë¤ª¤¤¤Æ¡¤ÂÐÌõʸÃæ¤Î±Ññ¸ì$e$¤ÈÆüËܸìñ¸ì$j$¤¬ÂбþÉÕ¤±¤µ¤ì¤ë²ó¿ô¤Î´üÂÔÃÍ $c(j\vert e;J^{(s)},E^{(s)})$¤È¡¤ÆüËܸìñ¸ì¤Î°ÌÃÖ$j$¤È±Ññ¸ì¤Î°ÌÃÖ$i$¤¬ÂбþÉÕ¤±¤é¤ì¤ë²ó¿ô¤Î´üÂÔÃÍ $c(i\vert k,m,l;J^{(s)},E^{(s)})$¤¬Â¸ºß¤¹¤ë¡¥¤³¤ì¤é¤Ï°Ê²¼¤Î¼°¤Çµá¤á¤é¤ì¤ë¡¥
$\displaystyle c(j\vert e;J^{(s)},E^{(s)})$ $\textstyle =$ $\displaystyle \frac{t(j\vert e)}{t(j\vert e_{0}+¡Ä+t(j\vert e_{l})}\sum_{k=1}^{m}\delta(j\vert j_{k})\sum_{i=1}^{l}\delta(e\vert e_{i})$  
  $\textstyle =$ $\displaystyle \frac{t(j\vert e)\alpha(i\vert k,m,l)\delta(f\vert f_{k})\delta(e...
...{k}\vert e_{0})\alpha(0\vert k,m,l)+¡Ä+t(j_{k}\vert e_{l})\alpha(l\vert k,m,l)}$ (2.14)
$\displaystyle c(i\vert k,m,l;J^{(s)},E^{(s)})$ $\textstyle =$ $\displaystyle \sum_{a}P(a\vert e,j)\delta(i,a_{k})$  
  $\textstyle =$ $\displaystyle \frac{t(j\vert e)\alpha(i\vert k,m,l)}{t(j_{k}\vert e_{0}\alpha(0\vert k,m,l)+¡Ä+t(j_{k}\vert e_{l})\alpha(l\vert k,m,l)}$ (2.15)

¤Ê¤ª¡¤Model2¤Ï¡¤EM¥¢¥ë¥´¥ê¥º¥à¤Ç·×»»¤·¤¿¾ì¹ç¡¤Ê£¿ô¤Î¶ËÂçÃͤò»ý¤Á¡¤ºÇŬ²ò¤ò³ÍÆÀ¤Ç¤­¤Ê¤¤¾ì¹ç¤¬¤¢¤ë¡¥¤·¤«¤·¡¤Model1¤Ï¡¤Model2¤Ë¤ª¤¤¤Æ¡¤ $a(i\vert k,m,l)=(l+1)^{-1}$¤È¤Ê¤ëÆüì¤Ê¾õÂ֤Ǥ¢¤ê¡¤ºÇŬ²ò¤òµá¤á¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥¤³¤Î¤¿¤á¡¤Model2¤ÇºÇŬ²ò¤òµá¤á¤ë¤È¤­,Model1¤òÍѤ¤¤ë¡¥



2019-03-29