next up previous contents
Next: Model2 Up: IBMËÝÌõ¥â¥Ç¥ë Previous: IBMËÝÌõ¥â¥Ç¥ë   目次

Model1

(2.3)¼°¤Ï¼¡¤Î¤è¤¦¤ËÃÖ¤­´¹¤¨¤é¤ì¤ë¡¥


$\displaystyle P(J,a\vert E)=P(m\vert E)\prod_{k=1}^{m}P(a_{k}\vert a_{1}^{k-1},j_{1}^{k-1},m,E)P(j_{k}\vert a_{1}^{k},j_{1}^{k-1},m,E)$     (2.4)

$m$¤ÏÆüËܸì¤ÎʸŤǤ¢¤ê¡¤$a_{1}^{k-1}$¤ÏÆüËܸìʸ¤Î1ñ¸ìÌܤ«¤é$k-1$ñ¸ìÌܤޤǤΥ¢¥é¥¤¥á¥ó¥È¤Ç¤¢¤ë¡¥¤Þ¤¿¡¤$j_{1}^{k-1}$¤ÏÆüËܸìʸ¤Î1ÈÖÌܤ«¤é$k-1$ÈÖÌܤޤǤÎñ¸ì¤ò¼¨¤¹¡¥ (2.4)¼°¤Î±¦Êդϡ¤¥Ñ¥é¥á¡¼¥¿¤¬Â¿¤¯Ê£»¨¤Ê¤¿¤á¡¤·×»»¤¬º¤Æñ¤Ç¤¢¤ë¡¥¤½¤³¤Ç¡¤Model1¤Ç¤Ï(2.4)¼°¤Î¥Ñ¥é¥á¡¼¥¿¤ò´Êά²½¤¹¤ë¡¥

¤³¤ì¤é¤ÎÄêÍý¤òÍѤ¤¤Æ¡¤¥Ñ¥é¥á¡¼¥¿¤ò´Êά²½¤·¤¿¾ì¹ç¤Î$P(J,a\vert E)$,$P(J\vert E)$¤Ï°Ê²¼¤Ë¤Ê¤ë¡¥

$\displaystyle P(J,a\vert E)$ $\textstyle =$ $\displaystyle \frac{\epsilon}{(l+1^{m})}\prod_{k=1}^{m}t(j_{k}\vert e_{a_{k}})$ (2.5)
$\displaystyle P(J\vert E)$ $\textstyle =$ $\displaystyle \frac{\epsilon}{(l+1^{m})} \sum_{a_{1}=0}^{l}¡Ä\sum_{a_{m}=0}^{l}\prod_{k=1}^{m}t(j_{k}\vert e_{a_{k}})$ (2.6)
  $\textstyle =$ $\displaystyle \frac{\epsilon}{(l+1^{m})}\prod_{k=1}^{m}\sum_{i=0}^{l}t(j_{k}\vert e_{i})$ (2.7)

Model1¤Ï¡¤ËÝÌõ³ÎΨ$t(j\vert e)$¤Î½é´üÃͤ¬0°Ê³°¤Î»þ¡¤EM¥¢¥ë¥´¥ê¥º¥à¤ò·«¤êÊÖ¤·¤ÆÆÀ¤é¤ì¤ëÍ£°ì¤Î¶ËÂçÃͤè¤êºÇŬ²ò¤ò¿äÄꤹ¤ë¡¥EM¥¢¥ë¥´¥ê¥º¥à¤Ï°Ê²¼¤Î¼ê½ç¤Ç¹Ô¤ï¤ì¤ë¡¥

¼ê½ç1
ËÝÌõ³ÎΨ$t(j\vert e)$¤Î½é´üÃͤòÀßÄꤹ¤ë
¼ê½ç2
ÆüËܸì¤È±Ñ¸ì¤ÎÂÐÌõʸ($J^{(s)}$¡¤$E^{(s)}$)¡¤1$\leq$s$\leq$S¤Ë¤ª¤¤¤Æ¡¤ÆüËܸìñ¸ì$j$¤È±Ññ¸ì$e$¤¬Âбþ¤¹¤ë²ó¿ô¤Î´üÂÔÃͤò·×»»¤¹¤ë¡¥¤³¤³¤Ç $\delta(j\vert j_{k})$¤ÏÆüËܸìʸ$J$¤Ë¤ª¤¤¤ÆÆüËܸìñ¸ì$j$¤¬½Ð¸½¤¹¤ë²ó¿ô¤òɽ¤·¡¤ $\delta(e\vert e_{i})$¤Ï±Ñ¸ìʸ$E$¤Ë¤ª¤¤¤Æ±Ññ¸ì$e$¤¬½Ð¸½¤¹¤ë²ó¿ô¤òɽ¤¹¡¥


$\displaystyle c(j\vert e;J,E)=\frac{t(j\vert e)}{t(j\vert e_{0}+¡Ä+t(j\vert e_{l})}\sum_{k=1}^{m}\delta(j\vert j_{k})\sum_{i=1}^{l}\delta(e\vert e_{i})$     (2.8)

¼ê½ç3
±Ñ¸ìʸ$E^{(s)}$¤Î¤¦¤Á1²ó°Ê¾å½Ð¸½¤¹¤ë±Ññ¸ì$e$¤ËÂФ·¡¤ËÝÌõ³ÎΨ$t(j\vert e)$¤ò·×»»¤¹¤ë¡¥¤³¤³¤Ç$S$¤ÏÆü±ÑÂÐÌõʸ¤Îʸ¿ô¤òɽ¤¹¡¥

¼ê½ç4
ËÝÌõ³ÎΨ$t(j\vert e)$¤¬¼ý«¤¹¤ë¤Þ¤Ç¼ê½ç2¤È3¤ò·«¤êÊÖ¤¹


next up previous contents
Next: Model2 Up: IBMËÝÌõ¥â¥Ç¥ë Previous: IBMËÝÌõ¥â¥Ç¥ë   目次
2019-03-29