next up previous contents
Next: Model4 Up: IBMËÝÌõ¥â¥Ç¥ë Previous: Model2   目次

Model3

Model3¤Ï¡¤Model1¤äModel2¤È¤Ï°Û¤Ê¤ê¡¤1¤Ä¤Îñ¸ì¤¬Ê£¿ô¤Îñ¸ì¤ËÂбþ¤¹¤ë¾ì¹ç¤ä¡¤Ã±¸ì¤ÎËÝÌõ°ÌÃ֤ε÷Î¥¤ò¹Íθ¤¹¤ë¡¥ ¤Ê¤ª¡¤Model3¤Ï°Ê²¼4¤Ä¤Î¥Ñ¥é¥á¡¼¥¿¤òÍѤ¤¤ë¡¥

¤Ê¤ª$p_{0}$¤Ï°Ê²¼¤Î¼°¤Çɽ¤µ¤ì¤ë¡¥
$\displaystyle P(\phi_{0}\vert\phi_{1}^{l},e)=\bordermatrix{$ $\textstyle \cr$ $\displaystyle \phi_{1}+¡Ä+\phi_{l} \cr$ (2.16)

¤è¤Ã¤Æ¡¤Model3¤Ï°Ê²¼¤Î¼°¤Çɽ¤µ¤ì¤ë¡¥
$\displaystyle P(J\vert E)$ $\textstyle =$ $\displaystyle \sum_{a_{1}=0}^{l}¡Ä\sum_{a_{m}=0}^{l}P(J,a\vert E)$  
  $\textstyle =$ $\displaystyle \sum_{a_{1}=0}^{l}¡Ä\sum_{a_{m}=0}^{l}\bordermatrix{$  
    $\displaystyle \times\prod_{k=1}^{m}t(j_{k}\vert e_{a_{k}})d(k\vert a_{k},m,l)$ (2.17)

Model3¤Ï¡¤¤¹¤Ù¤Æ¤Î¥¢¥é¥¤¥á¥ó¥È¤ò·×»»¤¹¤ëÎ̤¬ÇüÂç¤Ç¤¢¤ë¤¿¤á¡¤EM¥¢¥ë¥´¥ê¥º¥à¤Ë¤è¤ë¶á»÷¤Çµá¤á¤ë¡¥

2019-03-29