next up previous contents
Next: Äó°Æ¼êË¡¤ÎÍøÅÀ Up: High order Joint Probability(Äó°Æ¼êË¡) Previous: High order Joint Probability(Äó°Æ¼êË¡)   目次

Äó°Æ¼êË¡¤Î³µÍ×

Ëܸ¦µæ¤Ç¤Ï¡¤¸À¸ì¥â¥Ç¥ë¤Ë$N$-gram¥â¥Ç¥ë¤ÎÂå¤ï¤ê¤ËHigh order Joint Probability¡Ê°Ê²¼Joint Probability¡Ë¤òÍѤ¤¤ë¡¥°Ê²¼¤Î¼°(2)¤Ë¤½¤Î·×»»¼°¤ò¼¨¤¹[2]¡¥


\begin{eqnarray*}
\hspace{-3cm}\sum_{j=0}^{M-1}\sum_{i=0}^{N-1}P(J_{j-2},J_{j-1},J_j,E_{i-2},E_{i-1},E_i)
\end{eqnarray*}


\begin{eqnarray*}\hspace{-1cm}\times\log_2\frac{P(J_{j-2},J_{j-1},J_j,E_{i-2},E_{i-1},E_i)}{P(J_{j-2},J_{j-1},J_j)P(E_{i-2},E_{i-1},E_i)}
\end{eqnarray*}


\begin{eqnarray*}
\hspace{-2cm} =\sum_{j=0}^{M-1}\sum_{i=0}^{N-1}\frac{count(J_{j-2},J_{j-1},J_j,E_{i-2},E_{i-1},E_i)}{N_{je}}
\end{eqnarray*}



$\displaystyle \hspace{-1.4cm}\times\log_2{\frac{\frac{count(J_{j-2},J_{j-1},J_j...
...{\frac{count(J_{j-2},J_{j-1},J_j)}{N_j}\frac{count(E_{i-2},E_{i-1},E_i)}{N_e}}}$     (4.1)


$J_j$¡§ÆüËܸìñ¸ì¡¡$M$¡§ÆüËÜʸ¤Îñ¸ì¿ô¡¡
$E_i$¡§±Ñ¸ìñ¸ì¡¡$N$¡§±Ñʸ¤Îñ¸ì¿ô
$P$¡§½Ð¸½³ÎΨ¡¡$count$¡§ÂÐÌõ³Ø½¬Ê¸Ãæ¤ÎÉÑÅÙ
$N_{je}$¡§ÂÐÌõ³Ø½¬Ê¸Ãæ¤ÎÆüËܸìñ¸ì¤Î»°¤ÄÁȤȱѸìñ¸ì¤Î»°¤ÄÁȤÎÁí¿ô
$N_j$¡§ÂÐÌõ³Ø½¬Ê¸Ãæ¤ÎÆüËܸìñ¸ì¤Î»°¤ÄÁȤÎÁí¿ô¡¡
$N_e$¡§ÂÐÌõ³Ø½¬Ê¸Ãæ¤Î±Ñ¸ìñ¸ì¤Î»°¤ÄÁȤÎÁí¿ô


2019-03-29