next up previous contents
Next: GIZA++ Up: ³µÍ× Previous: ¸À¸ì¥â¥Ç¥ë   目次

ñ¸ì¤Ë´ð¤Å¤¯ËÝÌõ¥â¥Ç¥ë

Åý·×ËÝÌõ¤Ë¤ª¤±¤ëñ¸ìÂбþ¤ò³ÍÆÀ¤¹¤ë¤¿¤á¤ÎÂåɽŪ¤Ê¥â¥Ç¥ë¤È¤·¤Æ¡¤IBM¤ÎBrown¤é¤Ë¤è¤ëÊ©±ÑËÝÌõ¥â¥Ç¥ë[2]¤¬¤¢¤ë¡¥ IBMËÝÌõ¥â¥Ç¥ë¤Ï¡¤model1¤«¤émodel5¤Þ¤Ç¤Î5¤Ä¤Î¥â¥Ç¥ë¤«¤é¹½À®¤µ¤ì¤Æ¤¤¤ë¡¥³Æ¥â¥Ç¥ë¤Î³µÍפò°Ê²¼¤Ë¼¨¤¹¡¥
model1
ÌÜŪ¸À¸ì¤Î¤¢¤ëñ¸ì¤¬¸¶¸À¸ì¤Îñ¸ì¤ËÌõ¤µ¤ì¤ë³ÎΨ¤òÍѤ¤¤ë
model2
model1¤Ë²Ã¤¨¤Æ¡¤ÌÜŪ¸À¸ì¤Î¤¢¤ëñ¸ì¤ËÂбþ¤¹¤ë¸¶¸À¸ì¤Îñ¸ì¤Î¸¶¸À¸ìʸÃæ¤Ç¤Î°ÌÃ֤γÎΨ¡Ê°Ê²¼¡¤permutation³ÎΨ¤È¸Æ¤Ö¡Ë¤òÍѤ¤¤ë¡ÊÀäÂаÌÃÖ¡Ë
model3
model2¤Ë²Ã¤¨¤Æ¡¤ÌÜŪ¸À¸ì¤Î¤¢¤ëñ¸ì¤¬¸¶¸À¸ì¤Î²¿Ã±¸ì¤ËÂбþ¤¹¤ë¤«¤Î³ÎΨ¤òÍѤ¤¤ë
model4
model3¤Îpermutation³ÎΨ¤ò²þÎÉ¡ÊÁêÂаÌÃÖ¡Ë
model5
model4¤Îpermutation³ÎΨ¤ò¹¹¤Ë²þÎÉ

IBMËÝÌõ¥â¥Ç¥ë¤ÏÊ©±ÑËÝÌõ¤òÁ°Äó¤È¤·¤Æ¤¤¤ë¤¬¡¤Ëܸ¦µæ¤Ç¤ÏÆü±ÑËÝÌõ¤ò°·¤Ã¤Æ¤¤¤ë¤¿¤á¡¤Æü±ÑËÝÌõ¤òÁ°Äó¤ËÀâÌÀ¤¹¤ë¡¥¤Ê¤ª¡¤°Ê²¼¤ÎÀâÌÀ¤ÏÆ£¸¶¤é[7]¤ÎÏÀʸ¤è¤ê°úÍѤ·¤¿¡¥

¸¶¸À¸ì¤ÎÆüËܸìʸ¤ò$J$¡¤ÌÜŪ¸À¸ì¤Î±Ñ¸ìʸ¤ò$E$¤È¤·¤ÆÄêµÁ¤¹¤ë¡¥IBMËÝÌõ¥â¥Ç¥ë¤Ë¤ª¤¤¤Æ¡¤ÆüËܸìʸ$J$¤È±Ñ¸ìʸ$E$¤ÎËÝÌõ¥â¥Ç¥ë$P(J\vert E)$¤ò·×»»¤¹¤ë¤¿¤á¡¤¥¢¥é¥¤¥á¥ó¥È\(a\)¤òÍѤ¤¤ë¡¥°Ê²¼¤ËIBM¥â¥Ç¥ë¤Î´ðËÜŪ¤Ê·×»»¼°¤ò¼¨¤¹¡¥


$\displaystyle P(J\vert E) = \sum_{a}P(J,a\vert E)$     (5)

¤³¤³¤Ç¡¤¥¢¥é¥¤¥á¥ó¥È$a$¤Ï¡¤$J$¤È$E$¤Îñ¸ì¤ÎÂбþ¤ò°ÕÌ£¤·¤Æ¤¤¤ë¡¥ IBMËÝÌõ¥â¥Ç¥ë¤Ë¤ª¤¤¤Æ¡¤³ÆÆüñ¸ì¤ËÂбþ¤¹¤ë±Ññ¸ì¤Ï1¤Ä¤Ç¤¢¤ë¤Î¤ËÂФ·¤Æ¡¤³Æ±Ññ¸ì¤ËÂбþ¤¹¤ëÆüñ¸ì¤Ï0¤«¤én¸Ä¤¢¤ë¤È²¾Äꤹ¤ë¡¥¤Þ¤¿¡¤Æüñ¸ì¤ÈŬÀڤʱÑñ¸ì¤¬Âбþ¤·¤Ê¤¤¾ì¹ç¡¤±Ñ¸ìʸ¤ÎÀèƬ¤Ë$e_{0}$¤È¤¤¤¦¶õñ¸ì¤¬¤¢¤ë¤È²¾Äꤷ¡¤Æüñ¸ì¤ÈÂбþ¤µ¤»¤ë¡¥

model1

¼°(3)¤Ï°Ê²¼¤Î¼°¤ËÃÖ¤­´¹¤¨¤é¤ì¤ë¡¥

$\displaystyle P(j,a\vert E) = P(m\vert E)\prod_{j=1}^{m}P(a_j\vert a_{1}^{j-1},j_{1}^{j-1},m,E)P(j_{j}\vert a_{1}^{j},j_{1}^{j-1},m,E)$     (6)

$m$¤ÏÆüËܸìʸ¤ÎʸŤò¼¨¤¹¡¥¤Þ¤¿¡¤$a_{1}^{j-1}$¤ÏÆüËܸìʸ¤Î1ñ¸ìÌܤ«¤é$j$-1ñ¸ìÌܤޤǤΥ¢¥é¥¤¥á¥ó¥È¤Ç¤¢¤ë¡¥ ¤½¤·¤Æ$j_{1}^{j-1}$¤ÏÆüËܸìʸ¤Î1ÈÖÌܤ«¤é$j$-1ÈÖÌܤޤǤÎñ¸ì¤ò¼¨¤¹¡¥ ¤³¤³¤Ç¡¤Model1¤Ç¤Ï°Ê²¼¤ò²¾Äꤷ¤Æ¤¤¤ë¡¥

°Ê¾å¤Î²¾Äê¤òÍѤ¤¤Æ¡¤¼°(4)¤Ï´Êά²½¤¹¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥°Ê²¼¤Ë¼°¤ò¼¨¤¹¡¥

$\displaystyle P(J,a\vert E)$ $\textstyle =$ $\displaystyle \frac{\epsilon}{(l+1)^{m}} \prod_{j=1}^{m}t(j_{j}\vert e_{a_{j}})$ (7)
$\displaystyle P(J\vert E)$ $\textstyle =$ $\displaystyle \frac{\epsilon}{(l+1)^{m}} \sum_{a_{1}=0}^{l} \cdots
\sum_{a_{m}=0}^{l} \prod_{j=1}^{m}t(j_{j}\vert e_{a_{j}})$ (8)
  $\textstyle =$ $\displaystyle \frac{\epsilon}{(l+1)^{m}} \prod_{j=1}^{m} \sum_{i=0}^{l}t(j_{j}\vert e_{i})$ (9)

model1¤Ë¤ª¤¤¤Æ¡¤ËÝÌõ³ÎΨ\(t(j\vert e)\)¤Î½é´üÃͤ¬0¤Ç¤Ê¤¤¾ì¹ç¡¤ EM¥¢¥ë¥´¥ê¥º¥à¤òÍѤ¤¤ÆºÇŬ²ò¤ò¿äÄꤹ¤ë¡¥EM¥¢¥ë¥´¥ê¥º¥à¤Î¼ê½ç¤ò°Ê²¼¤Ë¼¨¤¹¡¥

¼ê½ç1
$t(j\vert e)$¤Ë½é´üÃͤòÀßÄꤹ¤ë¡¥
¼ê½ç2
ÆüËܸì¤È±Ñ¸ì¤ÎÂÐÌõʸ($J^{(s)}$¡¤$E^{(s)}$)($1 \leq s$ $\leq S$)¤Ë¤ª¤¤¤Æ¡¤Æüñ¸ì$j$¤È±Ññ¸ì$e$¤¬ÂбþÉÕ¤±¤é¤ì¤ë²ó¿ô¤Î´üÂÔÃͤòµá¤á¤ë¡¥ ¤³¤³¤Ç $\delta(j, j_j)$¤ÏÆüËܸìʸ$J$¤Ë¤ª¤¤¤ÆÆüñ¸ì$j$¤¬½Ð¸½¤¹¤ë²ó¿ô¤òɽ¤¹¡¥¤½¤·¤Æ $\delta(e, e_i)$¤Ï±Ñ¸ìʸ$E$¤Ë¤ª¤¤¤Æ±Ññ¸ì$e$¤¬½Ð¸½¤¹¤ë²ó¿ô¤òɽ¤¹¡¥
$\displaystyle \displaystyle c(j\vert e;J,E) = \frac{t(j\vert e)}{t(j\vert e_0) + \cdots + t(j\vert e_l)} \sum^m_{j=1} \delta(j, j_j) \sum^l_{i=0} \delta(e, e_i)$     (10)

¼ê½ç3
±Ñ¸ìʸ$E^{(s)}$¤Ë¤ª¤¤¤Æ¡¤1²ó°Ê¾å½Ð¸½¤¹¤ë±Ññ¸ì$e$¤ËÂФ·¤Æ¡¤ËÝÌõ³ÎΨ$t(j\vert e)$¤ò·×»»¤¹¤ë¡¥

¼ê½ç4
$t(j\vert e)$¤¬¼ý«¤¹¤ë¤Þ¤Ç¡¤¼ê½ç2¤È¼ê½ç3¤ò·«¤êÊÖ¤¹¡¥

model2

model1¤Ë¤ª¤¤¤Æ¡¤¥¢¥é¥¤¥á¥ó¥È¤Î³ÎΨ¤Ï±Ñ¸ìʸ¤ÎŤµ$l$¤Ë¤Î¤ß°Í¸¤¹¤ë¡¥ ¤½¤³¤Çmodel2¤Ç¤Ï¡¤±Ñ¸ìʸ¤ÎŤµ$l$¤Ë²Ã¤¨¡¤$j$ñ¸ìÌܤΥ¢¥é¥¤¥á¥ó¥È$a_{j}$¡¤ ÆüËܸìʸ¤ÎŤµ$m$¤Ë°Í¸¤¹¤ë¤È¤·¡¤°Ê²¼¤Î¼°¤Çɽ¤¹¡¥

$\displaystyle a(a_{j}\vert j,m,l) \equiv P(a_{j}\vert a_{1}^{j-1},j_{1}^{j-1},m,l)$     (14)

¤è¤Ã¤Æ¡¤model1¤Î¼°(6)¤Ï°Ê²¼¤Î¤è¤¦¤ËÃÖ¤­´¹¤¨¤é¤ì¤ë¡¥
$\displaystyle P(J\vert E)$ $\textstyle =$ $\displaystyle \epsilon \sum_{a_{1}=0}^{l} \cdots \sum_{a_{m}=0}^{l}
\prod_{j=1}^{m}t(j_{j}\vert e_{a_{j}})a(a_{j}\vert j,m,l)$ (15)
  $\textstyle =$ $\displaystyle \epsilon \prod_{j=1}^{m} \sum_{i=0}^{l}t(j_{j}\vert e_{i})a(i\vert j,m,l)$ (16)

model2¤Ë¤ª¤¤¤Æ¡¤ÂÐÌõʸÃæ¤Î±Ññ¸ì$e$¤ÈÆüñ¸ì$j$¤¬ÂбþÉÕ¤±¤µ¤ì¤ë²ó¿ô¤Î´üÂÔÃͤǤ¢¤ë $c(j\vert e;J^{(s)},E^{(s)})$¤È¡¤Æüñ¸ì¤Î°ÌÃÖ$j$¤È±Ññ¸ì¤Î°ÌÃÖ$i$¤¬ÂбþÉÕ¤±¤é¤ì¤ë²ó¿ô¤Î´üÂÔÃÍ $c(i\vert j,m,l;J^{(s)},E^{(s)})$¤¬Â¸ºß¤¹¤ë¡¥°Ê²¼¤Ë¡¤´üÂÔÃÍ $c(j\vert e;J^{(s)},E^{(s)})$¤È $c(i\vert j,m,l;J^{(s)},E^{(s)})$¤òµá¤á¤ë¼°¤ò¼¨¤¹¡¥

$\displaystyle c(j\vert e;J^{(s)},E^{(s)})$ $\textstyle =$ $\displaystyle \sum_{j=1}^{m} \sum_{i=0}^{l}
\frac{t(j\vert e)a(i\vert j,m,l)\d...
...)}{t(j\vert e_{0})a(0\vert j,m,l)
¡Ü \cdots ¡Ü t(j\vert e_{l})a(l\vert j,m,l)}$ (17)
$\displaystyle c(i\vert j,m,l;J^{(s)},E^{(s)})$ $\textstyle =$ $\displaystyle \frac{t(j_{j}\vert e_{i})a(i\vert j,m,l)}{t(j_{j}\vert e_{0})a(0\vert j,m,l) ¡Ü \cdots ¡Ü
t(j_{j}\vert e_{l})a(l\vert j,m,l)}$ (18)

model2¤Ë¤ª¤¤¤Æ¤â¡¤ºÇŬ²ò¤ò¿äÄꤹ¤ë¤¿¤á¤ËEM¥¢¥ë¥´¥ê¥º¥à¤òÍѤ¤¤ë¡¥¤·¤«¤·¡¤·×»»¤Ë¤è¤Ã¤ÆÊ£¿ô¤Î¶ËÂçÃͤ¬»»½Ð¤µ¤ì¡¤ºÇŬ²ò¤¬ ÆÀ¤é¤ì¤Ê¤¤¾ì¹ç¤¬Â¸ºß¤¹¤ë¡¥model2¤ÎÆüì¤Ê¾ì¹ç¤Ë¡¤ $a(i\vert j,m,l)= (l+1)^{-1}$¤¬µó¤²¤é¤ì¤ë¤¬¡¤¤³¤ì¤Ïmodel1¤È¤·¤Æ¹Í¤¨¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥¤Þ¤¿¡¤ºÇŬ²ò¤¬Êݾڤµ¤ì¤Æ¤¤¤ëmodel1¤Çµá¤á¤é¤ì¤¿Ãͤò½é´üÃͤȤ·¤ÆÍѤ¤¤ë¤³¤È¤Ç¡¤ºÇŬ²ò¤òµá¤á¤ë¤³¤È¤¬¤Ç¤­¤ë¡¥

model3

model1¤ª¤è¤Ómodel2¤Ë¤ª¤¤¤Æ¡¤Æüñ¸ì¤È±Ññ¸ì¤ÎÂбþ¤Ï1ÂÐ1¤Î¾ì¹ç¤Î¤ß¤ò¹Íθ¤·¤Æ¤¤¤¿¡¥ ¤·¤«¤·¡¤model3¤Ç¤Ï¡¤1¤Ä¤Îñ¸ì¤¬Ê£¿ô¤Îñ¸ì¤ËÂбþ¤¹¤ë¾ì¹ç¤ä¡¤Ã±¸ì¤ÎËÝÌõ°ÌÃ֤ε÷Î¥¤Ë¤Ä¤¤¤Æ¤â¹Íθ¤¹¤ë¡¥ ¤Þ¤¿¡¤¥â¥Ç¥ë3¤Ç¤Ïñ¸ì¤Î°ÌÃÖ¤òÀäÂаÌÃ֤Ȥ·¤Æ¹Í¤¨¤Æ¤¤¤ë¡¥¥â¥Ç¥ë3¤Ç¤Ï°Ê²¼¤Î¥Ñ¥é¥á¡¼¥¿¤òÍѤ¤¤ë¡¥

¤µ¤é¤Ë¡¤±Ññ¸ì¤ËËÝÌõ¤µ¤ì¤Ê¤¤ÆüËܸì¤Îñ¸ì¿ô¤ò$\phi_{0}$¤È¤·¤Æ¡¤¤½¤Î¤è¤¦¤Êñ¸ì¤¬È¯À¸¤¹¤ë³ÎΨ$p_{0}$ ¤ò°Ê²¼¤Î¼°¤Ëɽ¤¹¡¥
$\displaystyle P(\phi_{0}\vert\phi_{1}^{l},e) =
\left(
\begin{array}{c}
\phi_{1...
...rray}\right)
p_{0}^{\phi_{1} ¡Ü \cdots ¡Ü \phi_{l} ¡Ý \phi_{0}}p_{1}^{\phi_{0}}$     (19)

¤·¤¿¤¬¤Ã¤Æ¡¤model3¤Ï°Ê²¼¤Î¼°¤Ë¤è¤Ã¤Æɽ¤µ¤ì¤ë¡¥


$\displaystyle P(j\vert e)$ $\textstyle =$ $\displaystyle \sum_{a_{1}=0}^{l} \cdots \sum_{a_{m}=0}^{l}P(j,a\vert e)$ (20)
  $\textstyle =$ $\displaystyle \sum_{a_{1}=0}^{l} \cdots \sum_{a_{m}=0}^{l}
\left(
\begin{array...
...\phi_{0}}p_{1}^{\phi_{0}}
\prod_{i=1}^{l}\phi_{i}!n(\phi_{i}\vert e_{i}) \times$  
    $\displaystyle \hspace*{2zw} \prod_{j=1}^{m}t(j_{j}\vert e_{a_{j}})d(j\vert a_{j},m,l)$ (21)

¥â¥Ç¥ë3¤Ç¤Ï¡¤Á´¤Æ¤Îñ¸ìÂбþ¤ò¹Íθ¤·¤Æ·×»»¤¹¤ë¤¿¤á¡¤·×»»Î̤¬ËÄÂç¤È¤Ê¤ë¡¥¤½¤Î¤¿¤á¡¤´üÂÔÃͤ϶á»÷¤Ë¤è¤Ã¤Æµá¤á¤é¤ì¤ë¡¥

model4

model3¤Èmodel4¤Î°ã¤¤¤Ï¡¤Ã±¸ì¤Î°ÌÃ֤ιÍθ¤Î»ÅÊý¤Ç¤¢¤ë¡¥model3¤Ë¤ª¤¤¤Æ¡¤Ã±¸ì¤Î°ÌÃÖ¤ÏÀäÂаÌÃ֤ǹÍθ¤·¤Æ¤¤¤¿¡¥¤½¤ì¤ËÂФ·¤Æ¡¤model4¤Ç¤Ïñ¸ì¤Î°ÌÃÖ¤òÁêÂаÌÃ֤ǹÍθ¤¹¤ë¡¥¤Þ¤¿¡¤³Æñ¸ì¤´¤È¤Î°ÌÃÖ¤â¹Íθ¤·¤Æ¤¤¤ë¡¥model4¤Ç¤Ï¡¤Ã±¸ì°ÌÃÖ¤ÎÏĤߤγÎΨ¤Ç¤¢¤ë $d(j\vert i,m,l)$¤ò°Ê²¼¤Î£²Ä̤ê¤Ç¹Íθ¤¹¤ë¡¥

model5

¥â¥Ç¥ë4¤Ç¤Ï¡¤Ã±¸ì¤Î°ÌÃ֤˴ؤ·¤ÆľÁ°¤Îñ¸ì¤Î¤ß¤ò¹Íθ¤·¤Æ¤¤¤ë¡¥ ¤½¤Î¤¿¤á¡¤Ê£¿ô¤Îñ¸ì¤¬Æ±¤¸°ÌÃÖ¤ËÀ¸¤¸¤¿¤ê¡¤Ã±¸ì¤¬Â¸ºß¤·¤Ê¤¤°ÌÃÖ¤ËÀ¸À®¤µ¤ì¤ë¤È¤¤¤¦ÌäÂ꤬¤¢¤ë¡¥ ¥â¥Ç¥ë5¤Ç¤Ï¡¤¤³¤ÎÌäÂê¤òÈò¤±¤ë¤¿¤á¤Ë¡¤Ã±¸ì¤ò¶õÇòÉôʬ¤ËÇÛÃÖ¤¹¤ë¤è¤¦¤ËÀ©Ì󤬻ܤµ¤ì¤Æ¤¤¤ë¡¥


next up previous contents
Next: GIZA++ Up: ³µÍ× Previous: ¸À¸ì¥â¥Ç¥ë   目次
2017-04-20