日英対訳パターンの自動抽出に向けて

鳥取大学大学院工学研究科

道祖尾 太祐 村上 仁一

徳久 雅人 池原 悟

研究の背景

機械翻訳において翻訳知識の獲得が重要な課題の一つ

結合価文法が提案

結合価文法 … 用言を中心に単文レベルで翻訳

用言や単文にこだわらない翻訳が必要

翻訳精度を向上させる方法

同じ意味を持つ"日本語表現"と"英語表現"を対にした"日英対訳パターン"の作成

(日英対訳パターンの例)

日本語表現	英語表現
「するために」	「in order to」
「NからNまで」	from N to N

・日本語表現,英語表現を別々に抽出する方法 は既に提案

問題点

- ・日本語表現と英語表現の意味的対応を自動的に行い、 日英対訳パターンとして抽出することは困難
- ・大量の日英対訳パターンの作成は人手では困難

人手での作成を補助する方法が必要

本研究の目的

対訳コーパスから日英対訳パターンの候補を自動的に抽出する方法の提案と、有効性の調査

対訳コーパス

日本文一文と英文一文が対応

文番号 日本文

- (1) 風呂が熱い.
- (2) 彼は立派な文を書く.
- (3) これは別の品です.

英文

the bath is too hot.

he writes a fine style.

this is a different article.

提案手法

日本語表現および英語表現の抽出方法

- N-gram統計処理方法: 池原, 白井, 河岡, "大規模コーパスからの連鎖型 および離散型の共起表現の自動抽出法", 1995
 - … 複数の文から共通の文字列を自動的に 発見し、抽出する方法
 - ·連鎖型共起表現N-gram統計処理方法
 - ・・・・連続的な共通の文字列を抽出 (例)「するために」
 - ・離散型共起表現N-gram統計処理方法 ・・・離れた場所にある共通の文字列を抽出
 - (例)「全く~ない」

連鎖型共起表現N-gram統計処理方法

- ・無抑制型 …「BCD」,「BC」,「CD」が抽出
- ・強抑制型 …「BCD」が抽出
- ・弱抑制型 …「BCD」,「BC」が抽出

提案手法

日本語表現と英語表現の対応

対訳コーパスから抽出された日本語表現, 英語表現を含む文の文番号を比較

同じ文番号の日本語表現と英語表現は 日英対訳パターンである可能性が高いと仮定

日英対訳パターンの候補を自動的に抽出

日本語表現と英語表現を対応させる方法

(対訳コーパスの例)

文番号の一致率

文番号の一致率 = <u>
文番号の一致数</u> 表現の抽出回数

(文番号)

(文番号の一致率)

日	英	一致率
∫p c]	[B C]	100%(文番号(1), (2)のうち, (1), (2)が一致)
∫p c]	$\lfloor M X \rceil$	50%(文番号(1), (2)のうち, (1)が一致)
∫p c]	「YZ」	50%(文番号(1), (2)のうち, (2)が一致)

閾値を設定し、日英対訳パターンの候補を抽出

評価実験

実験の目的

日英対訳パターンの候補を自動的に抽出する方法の有効性の調査

連鎖型共起表現に対して実験

実験の手順

対訳コーパス:対訳コーパスの種類単語単位、名詞の置換

日本語表現を抽出

(N-gram:連鎖型,離散型)

英語表現を抽出

(N-gram:連鎖型,離散型)

文番号の比較による 日本語表現と英語表現の対応づけ

日英対訳パターンの候補を抽出: 閾値の設定

評価(人手)

実験条件

- 1. 日本語表現と英語表現の単位
 - ・単語単位
 - … 単語を単位として文字列を抽出することで, 意味を持たない文字列の削除が可能
 - ・名詞の置換
 - … 名詞を置換することで, 意味として まとまりを持つ表現の抽出が可能
 - 名詞の置換により,表現の意味や構文形成に 重要な文字列を見失う可能性
 - →二つの方法で実験

2. 実験に用いる対訳コーパス

複数の対訳辞書から抽出した単文を使用

- ・単語単位の場合 … 8,500文
- ・名詞を置換した場合 … 28,000文

3. 連鎖型共起表現の抑制方法

日本語表現および英語表現は,連鎖型共起表現 N-gram統計処理方法の強抑制型と弱抑制型で抽出

- 4. 日英対訳パターンの候補の抽出(閾値の設定)
 - ・文番号の一致数が3以上の日英対訳パターンかつ,
 - ・文番号の一致率が50%以上の日英対訳パターン

評価方法

抽出された日英対訳パターンの候補の上位50個を人手で評価し、正解率を算出

<評価の分類>

〇:完全に対訳であると判断されるもの

△:ほぼ対訳であると判断されるもの

×:対訳ではないと判断されるもの

<正解率>

正解率(1) =
$$\frac{\bigcirc o$$
数 $}{$ 評価対象の総数(50)

正解率(2) =
$$\frac{\bigcirc \angle \triangle の数}{$$
評価対象の総数(50)

実験結果

1. 単語単位の場合の強抑制型

2. 単語単位の場合の弱抑制型

3. 名詞を置換した場合の強抑制型

4. 名詞を置換した場合の弱抑制型

1. 単語単位の場合の強抑制型(抽出数74)

評価	H	英
"○"	彼はまだ	he is still
(22/50)	これは私の	this is my
" <u>\</u> "	は丘の上にある	on the hill
(10/50)	と結婚した	she married a
"×"	の天才だ	he is a
(18/50)	へ行っている	the ship is

2. 単語単位の場合の弱抑制型(抽出数161)

評価	日	英
""	彼はまだ	he is still
(12/50)	これは私の	this is my
" _ "	で学校へ	to school by bus
(17/50)	と言っている	they complain of the
"×"	の天才だ	he is a
(21/50)	立てられぬ	people will talk

3. 名詞を置換した場合の強抑制型(抽出数130)

評価	日	英
"O"	NはNが短い	N is short in N
(7/50)	NとNは	Nand N
" <u>\</u> "	Nをもっている	N has a
(23/50)	NをNに行った	N went to
"×"	このNはNが	N of N
(20/50)	NはNに甘い	to N's N

4. 名詞を置換した場合の弱抑制型(抽出数438)

評価	Ħ	英
"○"	NとNは	Nand N
(4/50)	Nが安い	N is low
" <u>\</u> "	Nを買った	N bought a N
(27/50)	Nをもっている	N has a
"×"	なかなかのNだ	N is a
(19/50)	Nに立っていた	N of the N

正解率

	正解率(1)	正解率(2)
1. 単語単位	44%	64%
(強抑制型)	(22/50)	(32/50)
2. 単語単位	24%	58%
(弱抑制型)	(12/50)	(29/50)
3. 名詞を置換	14%	60%
(強抑制型)	(7/50)	(30/50)
4. 名詞を置換	8%	62%
(弱抑制型)	(4/50)	(31/50)

考察1

単語単位の場合,名詞を置換した場合に対して,それぞれ強抑制型,弱抑制型で実験

<正解率>

正解率(1): 単語単位の強抑制型で一番高い値

正解率(2): 平均61%

→ 日英対訳パターンの候補を自動的に 抽出できる見通し

<表現の単位と抑制型> 条件の選択は今後の検討が必要

考察2

抽出された日英対訳パターン … ほぼ対訳(評価△):多

人手での修正により,完全な日英対訳 パターンの収集が可能

<修正の例>… 下線部分が修正箇所

	日	英
	このNではN	in this N
(修正後)	このNではN	N in this N
	Nを買った	N bought a N
(修正後)	<u>N</u> はNを買った	N bought a N

人手での修正が必要であるが, 日英対訳パターンの作成を補助

まとめ

日英対訳パターンの候補を自動的に抽出する方法を提案

- ・正解率(1) … 単語単位の強抑制型で一番高い値
- 正解率(2) … 平均61%

本手法の有効性を確認

今後の課題

- ・離散型共起表現の抽出
- ・単文の他,重文や複文からの表現の抽出
- ・閾値の設定に関する調査