日英対訳パターンの自動抽出に向けて

鳥取大学大学院工学研究科
道祖尾太祐 村上仁一徳久雅人 池原悟

研究の背景

機械翻訳において翻訳知識の獲得が重要な課題の一つ

結合価文法が提案
結合価文法…用言を中心に単文レベルで翻訳 I用言や単文にこだわらない翻訳が必要

翻訳精度を向上させる方法

同じ意味を持つ＂日本語表現＂と＂英語表現＂
を対にした＂日英対訳パターン＂の作成
（日英対訳パターンの例）

日本語表現	英語表現
「するために」	「in order to」
「 N から N まで」	「from N to $N 」$

－日本語表現，英語表現を別々に抽出する方法 は既に提案

問題点

－日本語表現と英語表現の意味的対応を自動的に行い，日英対訳パターンとして抽出することは困難
－大量の日英対訳パターンの作成は人手では困難 I人手での作成を補助する方法が必要

本研究の目的

対訳コーパスから日英対訳パターンの候補を自動的に抽出する方法の提案と，有効性の調査
対訳コーパス

日本文一文と英文一文が対応

文番号
 日本文

（1）風呂が熱い。
（2）彼は立派な文を書く。
（3）これは別の品です。

英文
the bath is too hot．
he writes a fine style． this is a different article．

提案手法

日本語表現および英語表現の抽出方法

…複数の文から共通の文字列を自動的に発見し，抽出する方法
－連鎖型共起表現 N－gram統計処理方法
… 連続的な共通の文字列を抽出 （例）「するために」
－離散型共起表現 N－gram統計処理方法
…離れた場所にある共通の文字列を抽出 （例）「全く～ない」

連鎖型共起表現 N－gram統計処理方法

$$
\begin{aligned}
& \text { (例) 文(1). A } B C D E F \\
& \text { 文(2). } G B C D H \\
& \text { 文(3). I JBC }
\end{aligned}
$$

- 無抑制型…「BCD」，「BC」，「CD」が抽出
- 強抑制型…「BCD」が抽出
- 弱抑制型…「BCD」，「BC」が抽出

提案手法

日英対訳パターンの候補を抽出

日本語表現と英語表現の対応

対訳コーパスから抽出された日本語表現，英語表現を含む文の文番号を比較

同じ文番号の日本語表現と英語表現は日英対訳パターンである可能性が高いと仮定 $\boldsymbol{\nabla}$
日英対訳パターンの候補を自動的に抽出

日本語表現と英語表現を対応させる方法

（対訳コーパスの例）

文番号 日本文
（1）$a b c$
（2）$e b c$
f
，
（文番号）

\[

\]

（文番号の一致率）

日	英	一致率
「b c」	「BC」	100\％（文番号（1），（2）のうち，（1），（2）が一致）
「b c」	「W X」	50\％（文番号（1），（2）のうち，（1）が一致）
「b c」	「YZ」	50\％（文番号（1），（2）のうち，（2）が一致）

閾値を設定し，日英対訳パターンの候補を抽出

評価実験

実験の目的

日英対訳パターンの候補を自動的に抽出する方法の有効性の調查

連鎖型共起表現に対して実験

実験の手順

$$
\begin{array}{|l|}
\hline \text { 対訳コーパス : 対訳コーパスの種類 } \\
\text { 語単位, 名詞の直換 }
\end{array}
$$

日本語表現を抽出
（ N－gram ：連鎖型，離散型）
文番号の比較による
日本語表現と英語表現の対応づけ

日英対訳パターンの候補を抽出：閾値の設定

評価（人手）

実験条件

1．日本語表現と英語表現の単位
－単語単位
…単語を単位として文字列を抽出することで，意味を持たない文字列の削除が可能
－名詞の置換
…名詞を置換することで，意味として まとまりを持つ表現の抽出が可能

名詞の置換により，表現の意味や構文形成に重要な文字列を見失う可能性
\rightarrow 二つの方法で実験

2．実験に用いる対訳コーパス

複数の対訳辞書から抽出した単文を使用

- 単語単位の場合…8，500文
- 名詞を置換した場合…28，000文

3．連鎖型共起表現の抑制方法
日本語表現および英語表現は，連鎖型共起表現 N－gram統計処理方法の強抑制型と弱抑制型で抽出

4．日英対訳パターンの候補の抽出（閾値の設定）
－文番号の一致数が3以上の日英対訳パターン
かつ，
－文番号の一致率が 50% 以上の日英対訳パターン

評価方法

抽出された日英対訳パターンの候補の

上位50個を人手で評価し，正解率を算出＜評価の分類＞
○：完全に対訳であると判断されるもの
\triangle ：ほぼ対訳であると判断されるもの
×：対訳ではないと判断されるもの
＜正解率＞

$$
\text { 正解率 }(1)=\frac{\bigcirc \text { の数 }}{\text { 評価対象の総数(50) }}
$$

$$
\text { 正解率 }(2)=\frac{\bigcirc と \triangle \text { の数 }}{\text { 評価対象の総数 }(50)}
$$

実験結果

1．単語単位の場合の強抑制型

2．単語単位の場合の弱抑制型

3．名詞を置換した場合の強抑制型

4．名詞を置換した場合の弱抑制型

1．単語単位の場合の強抑制型（抽出数74）

評価	日	英
$" \bigcirc "$	彼はまだ	he is still
$(22 / 50)$	これは私の	this is my
$" \triangle "$	は丘の上にある	on the hill
$(10 / 50)$	と結婚した	she married a
＂$\times "$	の天才だ	he is a
$(18 / 50)$	へ行っている	the ship is

2．単語単位の場合の弱抑制型（抽出数161）

評価	日	英
＂○＂	彼はまだ	he is still
$(12 / 50)$	これは私の	this is my
＂\triangle＂	で学校へ	to school by bus
$(17 / 50)$	と言っている	they complain of the
＂$\times "$	の天才だ	he is a
$(21 / 50)$	立てられぬ	people will talk

3．名詞を置換した場合の強抑制型（抽出数130）

評価	日	英
＂○＂	N は N が短い	N is short in N
$(7 / 50)$	N と N は	N and N
$" \triangle "$	N をもっている	N has a
$(23 / 50)$	N を N に行った	N went to
$" \times "$	この N は N が	N of N
$(20 / 50)$	N は N に甘い	to N＇s N

4．名詞を置換した場合の弱抑制型（抽出数438）

評価	日	英
$" \bigcirc "$	N と N は	N and N
$(4 / 50)$	N が安い	N is low
$" \triangle "$	N を買った	N bought a N
$(27 / 50)$	N をもっている	N has a
＂\times＂	なかなかの N だ	N is a
$(19 / 50)$	N に立っていた	N of the N

蒌下崮

正解率

	正解率（1）	正解率（2）
1．単語単位	44%	
（強抑制型）	$(22 / 50)$	64%
$(32 / 50)$		
2．単語単位	24%	58%
（弱抑制型）	$(12 / 50)$	$(29 / 50)$
3． 名詞を置換 （強抑制型）	14%	60%
$(7 / 50)$	$(30 / 50)$	
4．名詞を置換 （弱抑制型）	8%	
$(4 / 50)$	62%	
$(31 / 50)$		

考察1

単語単位の場合，名詞を置換した場合に対して，それぞれ強抑制型，弱抑制型で実験
$<$ 正解率＞
正解率（1）：単語単位の強抑制型で一番高い値
正解率（2）：平均61\％
\rightarrow 日英対訳パターンの候補を自動的に抽出できる見通し
＜表現の単位と抑制型＞
条件の選択は今後の検討が必要

考察2

抽出された日英対訳パターン

 …ほぼ対訳（評価 \triangle ）：多人手での修正により，完全な日英対訳 パターンの収集が可能
＜修正の例＞…下線部分が修正箇所

	日	英
（修正後）	$\begin{aligned} & \text { この } N \text { では } N \\ & \text { この } N \text { では } N \end{aligned}$	in this N N in this N
（修正後）	$\begin{aligned} & \text { Nを買った } \\ & \text { Nは Nを買った } \end{aligned}$	N bought a N N bought a N

人手での修正が必要であるが，
日英対訳バターシの作成を補助

まとめ

日英対訳パターンの候補を自動的に抽出する方法を提案 ！

- 正解率（1）…単語単位の強抑制型で一番高い値
- 正解率（2）\cdots 平均 61%
本手法の有効性を確認

今後の課題

- 離散型共起表現の抽出
- 単文の他，重文や複文からの表現の抽出
- 閾値の設定に関する調査

